Complex Analysis II Chapter 4 Lecture Notes Spring 2024

§1 Fundamental Theorems
1.1 Line Integrals

A natural way to construct the integral of a complex function over a curve in the complex plane
is to link it to line integrals in R? as already seen in vector calculus.

We may understand this in two steps:

Definition Consider a complex function f(t) = u(t) + iv(t), for t € [a, b] C R, and u and v real
valued functions. If f is a continuous function, we may define

/abf(t) it = /abu(t) di+i /abv(t) dt (1)

Remark This definition, combined with the elementary properties of addition and multiplication
in C we saw in Chapter 1 Lecture, means that the integral has many intuitive properties that are
reminiscent of the properties of integrals of real functions. Let us mention a few without proof,
as these proofs are elementary:

— Let ¢ € [a, b], A € C and let f be continuous on [a, b]. Then

/f dt+/f t)dt = /f
[ soa=x [ s
e / f(t)dt)= / Re(s)ar . i /abf(t)dt>= /abfm(f(t)) it

— Although the following property is also intuitive, let us prove that:

/ bf(t)dt‘ < [rwla o)

If / f(t)dt =0, the inequality is trivial.

/f dt#OletQ—arg(/f dt) then/f /abf(t)dt
/f dt‘ <‘“’/f dt) Re </ ‘“’f(t)dt):/abRe(e‘wf(t)) dtg/ab|f(t)|dt O

With this preliminary step in place, we are ready to define integration on a general curve in C.

¥ and

Definition Let v be a piecewise differentiable arc in the complex plane, with parametric equation
y:iz=2z(t), a<t<b

If the function f is continuous on =, then f(z(t)) is continuous on (a, b), and we define the
integral of f on - as the line integral

/f dz—/f —dt (3)
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b
where the integral / may have to be split to match the intervals in which z is differentiable.
a

Remark The definition above only makes sense if the integral is independent of the way the
arc « is parameterized. This is simple to check, using the rules for the change of variables for
integrals of real valued functions. Imagine that another parameterization for ~ is given by

1 ¢ e (o, B) 2 (1(7)
with t : 7 € (a, B) — t(7) € (a, b) piecewise differentiable. Then,
b B
[teri= [ sew) 2wi= [ feemn G L
s z
— [ 1Gwm) F ) ar o

1.3 Line Integrals as Functions of Arcs
Definition Let v : z = 2(t), t € (a, b). We define the opposite arc, written —~, by
-y z=2z(—t), t € (—b, —a)

Then,
—a d —a a
| t@d= [ e freoa=— [ reeoE e a= [ reood
— —b -b b
where the last equality is obtained with a simple change of variable. Hence

/;ﬂ@w=—Lﬂ@@ (1)

Elementary Properties :

e Linearity as an operator on functions

Let f and g be two continuous functions on the piecewise differentiable arc v, and («, 3) € C
/(ozf—i-ﬁg)dz:oz/fdz—l—ﬁ/gdz (5)
2 Y Y

e Linearity as an operator on curves

Consider an arc v which can be subdivided into two piecewise-differentiable arcs y; and 7., and
f a continuous function on . Then

/vfdz:/ﬂfdz—l—/wfdz:/wfdz—l—/wfdz (6)

We can use this property to show that an integral over a closed curve does not depend on the
starting point on the curve. Indeed, consider two such points P and @), corresponding to different
parameterizations, as shown in the figure. If we call v; the part of v from P to ), and =, the
part of v from @ to P,
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Y1

Closed curve y

The expression in the middle corresponds to the evaluation of the integral starting from the point
P, while the expression on the right corresponds to the evaluation of the integral starting from
the point Q).

We conclude this section with a very simple example which will play a fundamental role in the
rest of this course.

Example Let a € C, and consider the integral

/ dz
, Z—a
where 7 is the closed circle with radius R and centered in a. A simple parameterization for v is
v :0€(0,2r) — 2(0) = Re®” + a. Thus

27
/dz :/ i d = omi
L Z—a 0

e Line integrals with respect to x and y

The line integral with respect to Z is defined as

4ﬂmﬁ:[7®m (7)

Line integrals with respect to = Re(z) and y = Im (z) along the arc 7 are then naturally
constructed as

Lﬂ@MZ%QAﬂAM+Lﬂdﬁ),lﬂdwzé(lﬂ@M—Lﬂd%)(&

If we then write f(z) = u(z, y) + iv(x, y), with z = x + iy, we have

/7f(z)dz:/vf(z)dx+i/7f(z)dy:[y(udx—vdy)—i—i[y(udynLvdx) ()

which can be viewed as another definition for / f(2)dz, involving only line integrals of scalar

functions, as already introduced in vector calculus Note that we have just reduced the complex

integral / f(2) dz to line integrals of the form / (z, y) dz + Q(x, y) dy as in Eq(9).
¥ v
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e Independence of Path

Recall that the integral / f(2)dz is said to be path independent if it has the same value for any
v

two paths with the same endpoints.

Theorem 1. (Independence of Path) Let 2 be an open connected set of R*, P and @ be
complex-valued continuous functions defined on €2, and v be a piecewise differentiable arc in €.

Then the integral / Pdx + @ dy depends only on the end points of v iff there exists a function

y
ou ou
U(z,y) on Q with the partial derivatives P(z,y) = B Q(z,y) = T

Proof (<) If such a U exists, then for any arc v between the points (z(a), y(a)) and (z(b),y(b)),

b T b
[ Paseqay= [ (G54 500 d= [ § WE0.0) d = UG, y0) UG y(a)

depends only on the end points of ~.

(=) Conversely, if / P(z, y)dr + Q(x, y)dy only depends on the end points of 7, we can

v
construct a single valued function U by fixing a point (g, yo) € €2, and defining for each (z1,y1) €
Q) that

U, g1) = / Ple.y)de + Qla,y) dy

where v is any arc between (z¢, yo) and (x1,y;). We now show that U satisfies the conditions of
the theorem.

Consider the point (x; + Az, y1), and any arc 7' between (zg,%0) and (z; + Az, y1). For Az
sufficiently small, there exists an arc 7" (t) = (x1,9y1) + (1 — t)(Az,0) in Q between (1, y;) and
(x1 4+ Az, yy) for t € [0,1]. Since the integral is path independent, we can write

Uy + Az, 1) = / Plx,y) dz + Q(z,y) dy

,y/

= | P(z,y)dz+ Q(z,y) dy+/ P(z,y)dz

ol vy

Constructing arcs 7" in this manner for all small Az, we may write

Ul + Az, ) = Ulry, ) I _
s Ac TA A ), Pewdr= Pl

oU
where the last equation follows from the continuity of P. We thus have 8—(901, y1) = P(x1,11)
x

oU
for each (x1,y,) € Q. With a very similar proof, we would show that a—(xl, y1) = Q(z1,y1) for
Y
each (z1,y1) € Q. which concludes our proof. [

Remark Let f(2) = u(z,y)+iv(z,y), P(z,y) = u(z,y)+iv(z,y), and Q(z,y) = i (u(z,y) + wv(z,y)) .
Since

/7 F(2)dz = / 7(2) (d + idy) = / Pla,y)de + e, y) dy
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and by the Theorem 1, the integral on the right-hand side depends on the end points if and only
oF F

if there exists F'(x,y) such that P(z,y) = e and iP(x,y) = Q(x,y) = E If such an F exists,
T Y

then
oF OF

ox oy
Writing F(z) = U(z,y) + iV (z,y), the equality above becomes Cauchy-Riemann equations for
U and V. So F' is analytic, with derivative f. We have proven the following theorem.

Theorem (Fundamental Theorem of Calculus for Integrals in C) Let 2 be an open
connected subset of C, f be a continuous function defined on €2, and v be a piecewise differentiable

arc in 2. Then the integral / f(2)dz depends only on the end points of v iff there exists an

.
analytic function F, called a primitive of f, such that F'(z) = f(z) for all z € Q.
Proof If F' is an analytic function such that f(z) = F’(2) for all z € , then, since

j{ f(z)dz = 7{ F'(z)dz =0 for each closed curve I' C Q, (10)
r r

the integral / f(2) dz is path independent.
Y

Conversely, if f is a continuous function on an open connected set ) and is such that

f[} F(=)dz =0

for each closed contour I' in €2, then f has a primitive by using a similar argument as in the
proof of Theorem 1.

Example Let n =0, 1, 2, ..., and a € C. Since
(z—a)" = 7 % and % is entire,

/ (2 —a)" dz = 0 for any closed curve v in C.

v

— When n = —1 and 7 is a closed curve around a, / (z —a)" dz = 2kmi # 0 for some k € Z\ {0}.

v

— Whenn = -2, —3,..., /(z —a)" dz = 0 for any closed curve v in C\ {a}.
v
e Integration with respect to arc length

We will often encounter integrals with respect to arc length, defined by

/ﬂmw:/k@wda/fmmVWMt (11)

As before, this only makes sense if the integral is independent of the parameterization. This
| r@ds= [ s
- v
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The length of a curve v in the complex plane is given by

L(y) = / ds = / dz]

Finally, using Eq. (2), we have the inequality:

/f(z) dz
i
1.2 Rectifiable Arcs

Consider the arc v : z = 2(t), a <t < b. We have seen a way to define its length if it is piecewise
differentiable. A more general definition is given by the least upper bound of all sums of the
form

< / ) =] < L) sup 1 (2) (12)

|2(t1) = 2(to)| + [2(t2) = 2(t0)[ + -+ + [2(tn) = 2(ta-1))

with a =ty <t; <ty <--- <t,_1 <t,=>. If this least upper bound is finite, v is said to be a
rectifiable arc. Any piecewise differentiable arc is rectifiable, and in that case the two definitions
of length are equivalent. The integral of a continuous function f on a rectifiable arc may be
defined as

N—o0,

12(ty) — 2(ty_1)| — 0 =

[ 1z lim S F () (+(8) — #(ti0))

In this course, we will never have to consider arcs which are not piecewise differentiable, but it
is important to know that many of the theorems hold with weaker assumptions on ~.

Cauchy’s Theorems
1.4 Cauchy’s Theorem for a Rectangle

Theorem 2. (Cauchy-Goursat Theorem) Let R={z=a2+iycC|a<z<b c<y<d}
be the rectangle in the complex plane and R be the boundary curve of R oriented in the
counterclockwise direction. If a function f is analytic on an open set U containing R, then

f(z)dz =0.
OR

Proof For any closed rectangle RC R, let n(é) be the integral of f on OR defined by

n(R)= [ f(z)dz
OR

Bisecting R into four congruent rectangles Ry, Ry, R3, and Ry, as shown in the figure, and using
that the integrals along shared sides cancel each other, we can write

n(R) =n(R1)+n(R2) +n(Rs) +1n(Rs) = Jisuchthat |n(R)| < 4|n(Ry)

Let R denote this subrectangle such that
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Rectangle R
Rl E RZ
R, R,
For each n = 1, 2 ..., we repeat the bisection process in that R™ to obtain a nested sequence
of nonempty closed subrectangles { R™1°° | such that
(R = [n(RO)[ == {0 (R)]

and ﬁ R™ £ 0.

n=1

Let zo be the unique point such that {zo} = ﬂ R™ . For any ¢ > 0, since f is analytic at zy € R,

n=1

36 > 0 such that
f(z) = f(20)

if |z—29| < ¢, then
Z— 20

<e <= |f(2) = f(20) = ['(20) (z = 20)| < €|z — 2

— f'(#0)

With this §, 3N € N such that

Vn>N, RW c{zeC| |z— 2l <d} (13)

Also since f(29) + f'(20) (z — 20) has an entire primitive, / (f(z0) + f'(20) (2 — 20)) dz =0
OR(™)
by the Fundamental Theorem of Calculus, we can write

n(R™) = /é)RW f(z)dz = /em(m (f(2) = f(20) = f'(20) (2 — 20)) dz

so that
‘77 (R(”))‘ <e / |z — 20| |dz| < ed, Ly,
OR(™)

where d,, is the length of the diagonal of R™ and L, is the length of its perimeter dR™.
Finally, if d is the length of the diagonals of R and L the length of its perimeter OR, since

d
dn:_7 Ln:£
2n 2n
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we conclude that
n(R)| < 4™ |n (R™)| < edL

Since ¢ is arbitrarily small, n (R) =0. O

Our goal is to now generalize this result for cases in which f may not be analytic at a finite
number of points (; inside R :

Theorem 3. Let f be an analytic function on the set R’ obtained from a rectangle R by omitting
a finite number of interior points (;. If f satisfies the condition

lim (z —¢) f(2) =0

Z—)Ci
for all 7, then

f(z)dz=0
OR
Proof Without loss of generality, we assume that f is not analytic at only one point ¢ in R. We

then subdivide R as shown in the figure, where Sy is a square with center (.

Rectangle R
_.-'—'-""'_F'—'thi
SCI
Using Theorem 2, we have
(2)dz = f(2)dz
OR 8So
Now, Ve > 0, since lirré (z =) f(2) =0, we may choose Sy small enough such that
2
itz €05 , then |(z =) f() <& = 11| <4 c q
Z J—
Hence,
d 40
(z)dz:e/ i <e—=28&
R as0 12— ¢ ¢/2
where ¢ is the length of a side of the square. Since ¢ is arbitrarily small, f(z)dz=0. O
OR

1.5 Cauchy’s Theorem in a Disk
Theorem 4. If f is analytic in an open disk A, then

/ f(z)dz =10 for every closed curve v in A.
gl
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Proof Let zyg = x + 1yo be the center of the disk A. For each z =z + iy € A, we define
P = [ 10 = [ $©do+ [ ir@dy
2! v 8!

where v is the arc that is horizontal from (xg, yo) to (z, yo) and vertical from (z, yo) to (z, y)
in the disk A.

Disk A

Z =XFi(y+AY)e

Arcy

Arcy

Thus we have

8y - Ay—0 Ay Ay—0 Ay

where 7" is the vertical line from (z,y) to (z,y + Ay) as in the above figure.

Now, by Cauchy’s theorem on rectangles, one can also write
Fe) = [ 10dc= [ 1©de+ [ ir©dy
,y/ ,Y/ ,y/

where 7' is the arc that is vertical from (xg, yo) to (zo, y) and horizontal from (zg, y) to (z, y)
in the disk A. Thus, applying the same reasoning, we can also find
or F(zx + Az, y) — F(z, y) 1 1

or A, Ay = Am, A )@ de = lim 12

Lf&ﬂxzﬂa

- oF OF
where 7 is the horizontal line from (x,y) to (z + Az, y). We conclude that e —i 5 which
T Y

implies that F' is analytic and is a primitive of f in A, so that by the fundamental theorem of
calculus

/ f(2)dz =0 for any closed curve v in A. O
v

We are now ready to prove Cauchy’s theorem in its full extent, as stated in the following.
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Theorem 5. (Cauchy’s Theorem) Let f be an analytic function in the open connected set A’
obtained by omitting a finite number of points (; from an open disk A. If f satisfies the condition

lim (== G) f(2) = 0

Z‘><i

for all 7, then

/ f(2)dz =0 for any closed rectifiable arc v in A’.
ol

Proof Without loss of generality, we can again assume that there is only one special point ( in

A. We define F(z) = / f(2)dz in a similar way as before; we just have to be careful with the

!

8!
location of ¢ with respect to the arcs we used in the proof.

First case: ( lies neither on the line = xy nor on the line y = yy, where 2y = xg + 11 is the
center of A and the initial point of 4. Then it is possible to construct a path v from z; to any
z # ¢ made only of horizontal and vertical line segments (three segments may be needed) with
the last segment a vertical segment and where v does not go through ( as shown in the figure.

Disk A

It is then easy to show, in the same way as before, that F,(z) =if(z).
We know by Cauchy’s theorem on a rectangle that F(z) = / f(z)dz, with 4/ shown in the
’Y/

figure, and that therefore F,(z) = f(z). We conclude that F' is analytic, so / f(2)dz = 0 for
o

any closed curve in A’

Second case: ( lies on the line z = x( or on the line y = yy. In that case, one just moves the
starting point 2, for the definition of F' away from xq + iyg to return to the first case. O

§2 Cauchy Integral Formulas
2.1 The Index of a Point with Respect to a Closed Curve

Page 10
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Lemma 1. Let z € C and v be a piecewise differentiable closed curve that does not pass through
z. Then there exists an integer k € Z such that

i .
/,Y(—z_%rkl'

Proof Let v : ( = ((t), a <t <b, and consider the function

C1 e
“”5A<w—z@mt

Since 7y does not pass through z, f is defined and continuous on [a, b]. Furthermore, for all ¢ such

d
that d_i (t) is continuous, we can write

1 d¢ d

SO - =) =0

f/(t):g(t)—zﬁ = @

Since v is piecewise differentiable and since e/® (¢(t) — z) is continuous on 7, we have

e T (¢(t) = 2) = constant = e/ (((a) — 2) = (((a) — 2) = /W = %

Also, since 7 is a closed curve, v(b) = 7(a) which implies that

C%Z:ﬂm:%m 0

el = /@ — 1 «— Jk € Z such that /
-

Definition The index of the point z with respect to the closed curve v is the number

1 d
n(y, z) = 27”/ C—Cz (14)

n can be viewed as a quantity measuring the number of times a closed curve winds around a
fixed point not on it. For this reason, n is often called the winding number.

Theorem Let v be a piecewise differentiable closed curve. The function f : z +— n(y, 2) is
constant on each open connected set of C\ {7}, and zero if this set is unbounded.

Proof The function
1 d¢
f A e
2mi ), C— 2

is integer valued on any open connected subset €2 of C\ {7}, and continuous on these sets. Since
the image f(2) of any such set € is also connected, and the only connected subset of the integers
contains at most one point, f is constant. In addition, for |z| sufficiently large, there is a disk
Dg(0) such that |z| > R and ~ is contained in Dg(0). Since 1/(¢ — z) is analytic for all { € Dg(0),
n(v, z) = 0 by the Cauchy’s theorem, and the result holds for the entire region by continuity. ]

2.2 Cauchy’s Integral Formula

Theorem 6. Let f be analytic in an open disk A, v be a closed curve in A, and n(vy, z) be the
index of z with respect to «. Then

n(v, z) f(z) = ZLm/ éf(_oz d¢ for each z € A\ {7} (15)
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Proof For each z € A\ {7}, we consider the function F': A\ {z} — C defined by
f(Q) = f(2)
(—z

Since f(¢) — f(2), ( — z # 0 are analytic, and ( — z # 0 in A\ {2z}, F is analytic on A\ {z},
and satisfies that

F(¢) = for each ¢ € A\ {z}

lim F(C) (¢ —2) =0,

(—z

Hence, by Cauchy’s theorem (e.g. Theorem 5), we have / F({)d¢ =0, ie.

~

/—c 1z /c— —rin(y, 2) f(z) O

Remark It is easy to show that the Cauchy’s integral formula (Theorem 6) still holds if f is an
analytic function in A\ {§}7,, and satisfies that 1iH€1 (z—&) f(2) =0 for each 1 <i <mn.
z—&;

Note that Cauchy’s formula gives an expression for f(z) only knowing that f is analytic in A
and knowing the values of f on . This will be useful to prove many key theorems, and to study
the local properties of functions. Here is a direct illustration:

Theorem (Mean-Value Property for Analytic Functions) The value of an analytic func-
tion f at z is equal to the average of its values around any circle |( — z| = R inside the domain
where it is analytic.

Proof The result comes directly from Cauchy’s integral formula:

f(z):i.f &dg‘:i/oﬂf(ZnLRew)dH O

211 Jie_sj=p C— 2 2m
Remark You probably came across a similar theorem for harmonic functions of real variables.
The connection is clear, through the Cauchy-Riemann equations.
2.3 Higher Derivatives

It is tempting to differentiate Cauchy’s formula under the integral sign to obtain analogous
formulae for the derivatives of f. To do so, we need a short lemma regarding that operation:

Lemma 3. Consider an open connected set (2 of C, and v an arc in §2. If ¢ is continunous on 7,
then

= & is analytic in 3
Fe) = [ i dc s mmalytie i 01 (2}

and its derivative is F (z) = nF,41(z) foreach n =0, 1, 2,.. ..
Proof We prove this lemma by induction.
e The lemma is true for n = 0.

e Let us assume that it holds for n — 1 : F,_; is analytic on Q \ {v} for any ¢ continuous on =,
and Fy_,(z) = (n— 1) Fy(2) V2 € Q\ {7}

o Let 29 € Q\ {7}, and consider a neighborhood Ds(zy) that does not meet 7, and inside that
neighborhood a smaller neighborhood Ds/s(29). Observe that

|z — z0] < 0/2

z € Dspa(z0) = {K_ 2| >6/2,V(eny
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For any continuous function ¢ continuous on v, we may write

Fu(2) = Fulz) = / - / - / ”f;@‘o Q- /c—o ac

=/<<_ f”( 5% /<— <—Zo>l<<_zﬁ(i2_zO>d<

Let v(¢) = 2

R =R = | [ - [ o ma) [ M 0o

Now, V2 € Ds/2(20),
=) [ 25 wdo| <ls-al () [ o1 14

and since ¢ is continuous on 7 and 7 is rectifiable, so we have
lim (z — zo)/ Q) —d¢ =0
220 y (C - Z)

Furthermore, we know by the induction hypothesis that the term in brackets in Eq.(16) goes to
zero as z — zg. Hence, for any ¢ continuous on 7, F, is continuous in zj.

, and rewrite the above equality as

Defining
Gn(Z) _ / w(C) dC Eq:(1>6) FTL(Z) B FTL(ZO) o anl(’z) — anl(zo) + Gn(Z)

'y(C_Z)n Z— 20 Z— 2
By the induction hypothesis, the first term on the right goes to G,_;(z0) = (n — 1) G,(20) as
2z — zp, and from our previous point we also know that G,, is continuous, so we find
F.(z) — F,(%
lim n( ) n( 0)

2—20 Z— 2

=(n—1)Gpn(z0) + Gn(z0) = nGp(z0) = nFyi1(z9) O

Remark The lemma gives us the following important result: Let €2 be an open connected set
in C, zy be a point in €, Ds(z9) be an open disk in €2, and C' be a circle with center z; inside
Ds(2p). If f is analytic in €2, then, by the Cauchy’s integral formula, we have

1
f(z) = —/ S d¢ for each z in the interior of C,
21 Jo (— 2
and, by applying the lemma, its derivative
1 f(¢)
"(2) = — | —>=d 17
PO =g | a7)
is analytic in the interior of C'. More generally,
|
iy = M [ O e o eachn—0, 1, 2 18
F"(z) QWi/c*(C—Z)nH ¢ for each n J1,2,.. (18)
is analytic in the interior of C. We have therefore proven the following central result of complex
analysis:

An analytic function on the open connected set (2 has derivatives of all orders in (2,
which are themselves analytic.
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Some Consequences of Cauchy Integral Formulas

Morera’s Theorem Let f be continuous in an open connected set 2. If / f(z)dz =0 for all

”
closed curves 7 in €2, then f is analytic in (2.

Proof Given the hypotheses of the theorem, f has a primitive in (2. By the result we just found,
f, the derivative of an analytic function in €2, is analytic itself. [

Cauchy’s Estimate Suppose f is analytic in a closed disk |z — 29| < R, and bounded on the
circle v : |¢ — 20| = R, i.e. M > 0 such that |f(¢)] < M for all ¢ € 5. Then for each

n=0,1,2 ...,
(n) nl f(€)
’f (ZO)’ S 27T/’y (C o Zo)n+1

Remark This inequality is known as Cauchy’s estimate. It can be used for the well-known
Liouville theorem below.

n! M

n! M

Liouville’s Theorem A bounded entire function is constant.
Proof Let f be an entire function bounded by M. Then, using Cauchy’s estimate, we have that

M M
VzeC,VR>0, |f'®)|<—= = |f'(?»)| < lim —=0 VzeC
R R—oo R

Hence f'(2) =0 for all z € C, which means that f is constant. [
The Fundamental Theorem of Algebra Every polynomial of degree n > 1 has n roots.

Proof Assume that P(2) = a,2" + a,_12""" + -+ + a1z + ap does not have a root. Then

1
g(z) == PE2) is an entire function. Furthermore, g is bounded since
z
P
- 1PG)]

2|00 |2|™

=0

=la,| = lim

By Liouville’s theorem, must be a constant equal to zero, which is not possible. Hence, P

b
P(z)

has at least one root «, and we can write

P(z) = (2 —a) Q(z)

Repeating the steps for ), we find that P must eventually have n roots. [

Power Series Representation If f is analytic in an open connected set {2 which contains a
closed disk Dg(2p), then f has a power series expansion at zo,

f(")(zo)

f(z) = Z ¢n (2 —20)"  which is convergent for all z € Dg(z), with ¢, = '
n!

n=0

Proof Vz € Dg(z0) = {2 € C ||z — 20| < R}, V( € Cr(z)) ={C € C||( — 20| = R}

1 . 1 1 _ 1 0 Z— 2 n_ [e’¢) - o B i
C_Z_C_zol——z_zo_C—Zo;(C—ZO) _2@ %0) (2 = 20)

¢ — 2o
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Since convergence is uniform in ( € Cg(2p), we can use Cauchy’s formula to write

1 f©Q . 1 — el m
f<2) - 271 »%CR(ZO) C_ z dC N 2mi %C"R(zo) f(C> n=0 (C ZO) (Z ZO) dC
/1
= — —20) " dC) (2= )"
> (s f. SO €= i) (=2
O £(n)
n=0 ’

63 Local Properties of Analytic Functions

3.1 Removable Singularities and Taylor’s Theorem

We have said that Cauchy’s integral formula applied to an analytic function f in A\ {&}7; as

long as thl (z—¢&) f(z) =0 for each 1 <i < n. We will now see that Cauchy’s integral formula
z—&;

provides a natural way to extend such f to an analytic function f on the entire set A. In other

words, {&;}7, are removable singularities of f.

Theorem 7. Let Q2 be an open connected subset of C, { be a point in €2, and f be analytic
in ' = Q\ {&}. There exists an analytic function f in € which coincides with f in Q' iff

linz (z— &) f(2) = 0. The extended function f is uniquely determined.
2

Proof If the extended function fexists, it is unique since fvis continuous at &.

(=) Since f is continuous at &, we have liné (z—&) f(z) = lirré (z—€) f(z)=0.

(<) Let A = D,(&) be an open disk in , let C' be a circle with center £ inside A, and let
F: A\ {¢{} — C be a function defined by

F(¢) = f(cz — f( ) for each Ce A\ {¢).
Since F' has two singularities in A : ( = z and { = &, and since
f(Q) = f(z)

lim (¢ — z) F(¢) = lim (¢ — 2) - = lim (f(¢) — f(2)) =0

(—z oz (—z oz
by continuity of f in z; and

) Y e _ (=
I (C=8) FO=ImC -8 = =~

=0
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by the hypothesis of the theorem, we have
Q) — f(2)

_ : f( _
/CF(Q)dC—O by Cauchy’s theorem —- /c - a¢c =0
Hence, for any z # ¢ in A, we have
1
f(Z):Q_m/C%dC for all z € A\ {¢} (20)

Now, we know from Cauchy’s integral formula the right-hand side of (20) is an analytic function
of z throughout the inside of C. It is therefore continuous in &, with value

L[

2mi Jo (=€

In other words,

f(z)—i/&dg . V2eQ (21)

2 Jo (2
is the desired analytic extension of f in the whole open connected set 2. [

Remark Note that if f is analytic in an open connected set {2 and £ is a point in €2, then the
function F': Q\ {¢} — C defined by

F(z):Lg(g) forzGQ\{f}

is analytic in Q \ {£}. Since

lim(z—&) F(z)=0 , limF(z) = f/(€)

z—¢& z—¢€

and by Theorem 7, there exists an (extended) analytic function f; on €2 such that

I OE(GI
fl(z): F(Z)_ Z—g f #f
f'(€) if 2=¢

Thus, we may thus write

F2) = F©+ (=€) filz) forall z€Q

This expansion for f can also be applied to f; : there exists an (extended) analytic function fo

on ) such that h) - RO
1\Z) — 1 .
) = —2_5 if 2 £¢
f1) ifz=¢

and we may write

fi(2) = O+ (=8 fo2) = fR)=fE)+ == F(E)+ (2= fo(z) forall zeQ

Continuing the recursion, we can write the general form

foc1(2) = fuc1(§) + (2= &) fulz) forall z€ Q, n>2
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In this process, we obtained the following expansion for f :

(2= + (2= )" fulz) forall z€Q

Furthermore, by direct differentiation at z = £, we have

F(€) = nlfu(€)

We have just proved Taylor’s theorem, stated below:

Theorem 8. (Taylor’s Theorem) If f is analytic in an open connected set ) containing &,
then it is possible to write

n—1
Z LA k:' (2= + (2= &)" fu(z), where f, is analytic in €. (22)

Remark Note that Taylor’s formula, given by Eq.(22), is not a Taylor series, it is very useful
nonetheless, especially because there is a simple expression for f, in terms of f :

1 f(©) _ el
fn(z)%/c i whee =z =gl =1} < 0 (23)
Proof of (23): By Cauchy’s integral formula, we have
L [ Q) 1 f<<: - @)

WO =5 [ 5= 5 | o Z / T
and note that for 1 < k <n — 1, each term in the sum has the following form, up to a constant
factor:

1 dg 1 (¢) B
gk(é)—zm/c(C_g),g(g_z)—m/(C o ~dC 1<k<n-—1

where ¢(¢) = 1/(¢ — &) is continuous on C. Hence, by the Lemma 4.2.3, we have
(&) = kgr1(§) forall € Q\Cand1<k<n-1

Now, for each £ # z inside C| since

d¢ 1 1 1 1 o
= = - d¢ = —— (2mi — 2i) = 0
w0~ [ o e (o) e g rim e
we conclude g1(§) = 0, thus ¢;(§) = 0 and gx(¢) = 0 for all 2 < k < n — 1, from which the
formula (23) for f, follows. [

Corollary If f is analytic in the open connected set €2 and if there exist & € €2 such that
f™E)=0foralln=0,1,2,..., then f =0in Q.

Remark Since f is analytic in €2, there is a disk D(§) C € such that f(z) = ch(z "
n=0

with ¢, = f™(&)/n! =0 foralln =0, 1,2,...,s0 f = 0in D(£). Here we propose a slightly

different proof as a way to practice with Taylor’s formula and upper bounds.

Proof Let us first prove that f = 0 in a disk Dg(&) C © with boundary C' = {( | |( — £| = R}.
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¢

If () =0foralln=0,1,2,..., then by Taylor’s formula we have

1
FO = (=€ hle) with o) = 5 [ =L
Let M = max{|f(z)|| z € C}. For each z € Dg(§), since |( — | — |z — £| <|( — z|, we have
1 M 2R z—&" MR B B
|fn(Z)|§%ﬁm:>|f(2)|§ R| Relz—¢ Vn=0,12..= f(z)=0.

To complete the proof, we now have to extend the result from Dg(£) to Q. For this purpose,
consider the following two sets:

E={2€Q| f"%2)=0Vn=0,1,2,...}
Ey:={2€Q|3n=0,1,2,... such that f™(2) # 0}
E;, and E, are such that E; N Ey = (). The first part of the proof shows that F; is an open
set. Furthermore, by continuity of f and all its derivatives, F5 is open as well. Now, since {2

is connected and Q = E; U E,, either By = () or Ey = (. According to the hypotheses of the
theorem, E; # (). Therefore Ey = (), and f = 0, as desired. [

3.2 Zeros and Poles

Let f be an analytic function in €2 which is not identically zero. A point & € 2 is called a zero
of order N > 1 of f if, by Taylor’s formula, we can write

f(z)= (=" fn(2)

where fy is analytic and fy(§) # 0 which implies that 30 > 0 such that Vz € Ds(§) \ {¢},
f(2) # 0, i.e. the zeros of such f are isolated. This can be reformulated as the following.

o0

Theorem Suppose f(z) = Z cn(z — &)™ converges for all z € Dg(§). If there exists a sequence

n=0
of points {z}pe; C Dr(€)\{{} such that klim 2z =&, and f(z;) =0 forall k € N, then f(z) =0
—00
for all z € Dg(&).

Theorem (Identity Theorem) If f and g are analytic in , and if f = g on a set which has
an accumulation point in €2, then Vz € Q, f(2) = g(2).

The theorem is immediate by looking at Taylor’s formula for f — g, as long as we remember what
an accumulation point is:

Page 18



Complex Analysis II Chapter 4 Lecture Notes(Continued)

— a point z of a subset S is called an isolated point of S if there exists a neighborhood of z whose
intersection with S reduces to the point z

— an accumulation point is a point of S which is not an isolated point.

Corollary If f is analytic in € and identically zero in a nonempty connected open subset of €2,
then f =0 in Q.

Corollary If f is identically zero on an arc in €2 which does not reduce to a point, f =0 in €.

Definition f is said to have an isolated singularity at £ if f is analytic in a deleted neighborhood
Ds(€) \ {£} but is not analytic at &.

Definition Suppose f has an isolated singularity at &.
(i) If there exists a function f, analytic at ¢ and such that f(z) = f(z) for all z in some deleted

neighborhood Ds(€) \ {£}, we say f has a removable singularity at €. (i.e. if the value of f
is “corrected” at the point &, it becomes analytic there).

(i) If, for z # &, f can be written in the form f(z) = A(z)/B(z) where A and B are analytic
at &, A(€) # 0, and B(£) = 0, we say f has a pole at . (If B has a zero of order N at £, we
say that f has a pole of order N.)

(iii) If f has neither a removable singularity nor a pole at £, we say f has an essential singularity
at &.

Remarks

(a) If f has a pole at £, then, by continuity, there exists 6 > 0 such that f(z) # 0 for all
z € Ds(§) \ {¢}. Thus, g(z) := 1/f(2) is analytic on Ds(&) \ {¢}, and can be extended
analytically on Ds(&) with g(&) := 0 since lir% (z—=¢&) g(z) =0.

zZ—r

(b) If f has a pole of order N at £, then, by Taylor’s formula, we can write

(=" fE) =antann(z=+ +a1(z="" +oz)(z - "
with ¢ analytic at z = £. Hence, for z # £, we may write

_ 4N a—N+1 a—1
f(z)_<z_£)N+(Z_€)N—1+ +z—§

+ ¢(2)

N
where Z a__kg)k is called the singular part of f at &.
k=1

(z

Example f(z) = e"/* has an essential singularity at £ = 0. Note that f(D.(0) \ {0}) = C* for
each € > 0.

1/z 3r _ €
/_\) /\
s
€ /e 0
—T

Page 19



Complex Analysis II Chapter 4 Lecture Notes(Continued)

Note that the set D.(0) \ {0} gets inverted outside the ball D;.(0) under the map 1/z; and for
each n € Z, the horizontal strip

H,={z=z+iy|lzeR n+2n—1)r <y<nm+2nr}
is mapped onto C* = C\ {0} by €*. So, by choosing n, so that H, lies outside D;,.(0), we would
have f(D.(0)\ {0})=C*. O

The behavior of a function near an essential singularity is quite extreme, as illustrated by the
following theorem.

Theorem 9. (Casorati-Weierstrass Theorem) If f has an essential singularity at £ and if
A’ is a deleted open neighborhood of &, then f(A’) = {f(z) | z € A"} is dense in C i.e. for any
0 > 0 and for any w € C,

Ds(w) N f(A") # 0.

Remark Casorati-Weierstrass Theorem says that: an analytic function comes arbitrarily close
to any complex value in every neighborhood of an essential singularity.

4

Proof Suppose not. Then 3 Ds(w) with Ds(w) N f(A’) = (. This means that

lf(z) —w|>§ — ;<

1
- Vze A
|f(z) —w| 0

1
Thus W is bounded analytic on a deleted neighborhood A’ of ¢ which implies that £ is a
Z) —w

1
removable singularity of and the function g defined by g(z) = ———— is analytic on
z) —w f(z)—w
the neighborhood A" U {¢}.
. 1+ wg(z) . . . . .
Since f(z) = T is a ratio of two analytic functions and by applying the Taylor Theorem
g(z

on g(z) at &, we conclude that

- ¢ is a removable singularity of f(z) if g(§) # 0,
- & is a pole of order N of f(2) if g™ (€) #0 and g™ (&) =0forall 0< k<N —-1. O

Suppose the statement is false, then 32y € C and ¢ > 0 such that

|f(2) — 20| > d for all zin a deleted neighborhood of { = liné L_;O = 00
Z—> z —
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and the function

has a pole of order N at z =&,

so we may write g(z) = (z — &)~ gn(2), where gy is a nonzero analytic function in a neighbor-
hood of &. Thus,

f(z)= (=" gn(2) + 20
which implies that

- if N =1, then f has a removable singularity at z = &;
- if N > 1, then f — 2y, and f, have a pole of order N — 1 at z = ¢£.

Hence, if f has an essential singularity at £, the statement of the theorem must be true. [

Definition We say f meromorphic in an open connected set €0 if f is analytic in 2 except at
isolated poles.

3.3 The Local Mapping

Theorem 10. (Argument Principle I) Let f be analytic function in a disk Dg(a) which does
not vanish identically, and let {¢;} be the zeros of f, each zero being counted as many times as
its order indicates. For every closed curve v in Dg(a) which does not pass through a zero, we
have

Sl ) = g [ ZE (24)

J
Proof Case 1. f has a finite number of zeros {(;};_; in Dg(a).
For each z € Dg(a), by Taylor’s formula, we may write
f2)=(=GC) (=) (2= G) 9(2)

with ¢ analytic and such that g(z) # 0, Vz € Dg(a).
Hence, for any z € Dg(a) such that z # ¢,

f'(2) 1 1 1 J'(2)
o -G -G U TIma e

By Cauchy’s theorem,

9'(z) I N
L 9(2) dz=0 = 27rz'/,y 7(2) d ; (v, &) (25)

Case 2. f has infinitely many zeros {(;};2, in Dg(a).

Since v is inside Dg(a), it is contained in a disk Dg/(a) smaller than Dg(a). Now, since f is not
identically zero, it can only have finitely many zeros inside Dg/(a), by the Bolzano-Weierstrass
theorem and the identity theorem. Thus, the formula (25) holds inside Dg (a). It holds inside
Drg(a) as well since for the zeros of (; of f outside of Dg/(a), n(y, (;) = 0. This concludes our
proof. [
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Remark

e Observe that the integral on the right of (24) can be represented as

L LT OO0, L [N, L[

2mi )., f(2) - 2mi F(y(t) C2mi J, (fov)(t) 2mi foy W

so, by letting I' = f o+, the equality (24) in the theorem can thus be interpreted as the equality

n(T. 0) = 1 dw 1 dw 1 [ f(2) dz=> n(y, ()

2mi w o 2w Sy, wo 2w ), f(2)

e The most useful application of the theorem is for the case when 7 is a circle (or more generally
a simple closed curve) so that

(v, ¢.) 0 it ¢; is outside ~y
n(vy, ;) =
T 5 1 if ¢; is inside

The formula in the theorem then gives a formula for the number of zeros enclosed by ~. This
formula is at the heart of a number of numerical methods to locate the zeros of an analytic
function.

e The name “argument principle” can be given the following intuitive-although not at all rigorous-
interpretation:

d
« Ew =d(Inw) = d(In |w| +iargw) ”

Note the quotes around these equalities, which should be seen as formal equalities and nothing
else. For any curve that does not pass through 0, In |w| is well defined, so by the fundamental
theorem of calculus the contribution of the real part in the formal equalities above to the integral
is zero when one integrates over a closed curve.

Open Mapping Theorem

Let a € C, and {(j(a)} be the roots of the equation f(z) = a. Applying the argument principle
theorem to the equation f(z) = a, we have

1 dw
_ — (T
Zn(’y, Gl 27m/ f(z —a 27 w—a T a)

J foy

for any closed curve v which does not pass through a point z such that f(z) = a.
Now, if two points a and b are both in the interior of I' = f o7, or both in its exterior,
n(l, a) =n(l,b) <= Y nly. (a) =Y _n(y. 1))
J J
For the special case in which « is a circle (or a simple closed curve), that means that f takes the
values a and b an equal number of times inside . This leads to the following theorem.

Theorem 11. Suppose that f is analytic at zy, and that f(z) — wy has a zero of order N at
z = zp. If € > 0 is sufficiently small, there exists 0 > 0 such that Va € C with |a — wy| < 6, the
equation f(z) = a has exactly N roots in the disk |z — zo| < ¢, i.e. Ds(wg) C f(D-(20)) and each
point in Ds(wy) is mapped exactly N times by points in D.(2).

Proof Choose € > 0 such that
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e f is analytic in |z — 2| < ¢,
e 2 is the only zero of f(z) — wp in the disk |z — z| < ¢,

e f'(z) # 0 for z such that 0 < |z — 2| < e.

Let 7 be the circle |z — zp| = ¢ and I' = f o~y. Since I' is closed and wy = f(29) ¢ I', there exists
a 0 > 0 such that Ds(wy) NT = 0. For each a € Ds(wy), since

z-plane w-plane

> n(v, ¢ia) = n(T, a) = n(T, wo) =Y _n(y, ¢(wo)) = N,
J J
the equation f(z) = a has exactly N roots inside of 7, i.e. a is taken exactly N times in
the disk |z — 29| < e. Furthermore, since ¢ is chosen small enough such that f'(z) # 0 for all
0 < |z—2p| < ¢, the equation f(z) = a has exactly N simple roots {(;(a)} in the disk |z —zy| < e.
0

Corollary 1. (Open Mapping Theorem) Let {2 C C be an open connected set. If f:Q — C
is a nonconstant analytic function, then f maps open sets to open sets.

Proof For each wg = f(20) € f(2) and any sufficiently small ¢ > 0, there exists a § > 0, as in
the proof of Theorem 11, such that

Ds(wo) € f(De(20)) € f(2)
which implies that wy is an interior point of f(€2). Hence, f maps interior points are mapped to

interior points, or equivalently, f maps open sets to open sets. [l

Corollary 2. If f is analytic at 2y and zy is a simple zero of f(z) — wy, then there exists a
neighborhood of zy and a corresponding neighborhood of wy on which f is one-to-one.

3.4 The Maximum Principle

Consider a function f which is analytic and nonconstant on an open connected set (). By the
open mapping theorem, Vz, € €, there exists an open disk |w — f(29)| < e contained in the
image of . In this open disk, there are points w such that |w| > |f(z9)]. In other words, |f(zo)|
is not the maximum value of |f(z)|. This proves the following :

Theorem 12. (Maximum Modulus Principle) If f(z) is analytic and nonconstant in an open
connected set €2, then its modulus |f(2)| has no maximum in €.

Remark The theorem is often reformulated in the following equivalent way:

Theorem 12'. If f(z) is defined and continuous on a closed bounded set E, and analytic in the
interior of E, then the maximum of |f(z)| on E is assumed on the boundary of F.
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Example Let 2 C C be an open connected set such that QN {0+ iy | y € R} # (). Show that
there does not exist an analytic function f(z) = f(z +iy) on Q with modulus |f(z)| = K/ coshx
for some constant K # 0.

Since cosh 0 is a minimum of coshz, the modulus |f(z)| achieves maximum at interior points
{0 + iy € Q} of an open connected set €. Also since f cannot be constant by hypothesis, this
would contradict the maximum modulus principle, so no such f exists. [

Theorem 13. (The Lemma of Schwarz) If f(z) is analytic in the disk D;(0) = {z | |2z| < 1}
and satisfies the conditions

f(0)=0 and |[f(2)] <1 Vze€ Di(0),

then |f(z)] < |z| for all z € Dy(0) and |f'(0)] < 1. Furthermore, if |f(z)| = |z| for some
z € D1(0)\ {0}, or if |f'(0)] =1, then f(z) = Az, with A € C such that |A| = 1.

Proof For z € D;(0), consider the function g defined by

)
o) =4 5 if 2z#0
F0)  ifz=0

From the hypotheses of the theorem, we know that g is analytic. For each 0 < R < 1, since
lg(2)| < 1/R on the circle Cg(0), we have

1
R
by the maximum modulus principle. Letting R — 1, we conclude that [g(z)| < 1 for |z]| < 1.
This concludes the proof of the first part of the theorem.

lg(2)| < for all z € Dg(0), 0< R< 1

Furthermore, if | f(z)| = |z| holds for some z # 0, in D;(0), then g reaches its maximum modulus
in the disk, so g is constant. The same reasoning holds in |f'(0)] = 1. O

Remark The lemma of Schwarz is more powerful than one may at first think because its condi-
tions can be generalized substantially:

e Consider an analytic function f(z) on the unit disk, which maps D;(0) onto itself, and z, €
D4(0), with f(z9) = wy. The M&bius transformations
Z— 20

T(z) = T

maps the unit disk onto itself, and is bijective. Likewise,
w — w
S(w) = ;

1 —wow

maps the unit disk onto itself. We conclude that the map So foT ! maps D;(0) onto itself, and
S(f(T7'(0))) = 0. We can apply the lemma of Schwarz to So foT ", to obtain the inequality

fT N w) = f(=) | _ | f (T (w)) — wo
1— flzo)f (T-Y(w))| |1 —=wof (T~ (w))
With z = T7'(w) <= w = T(z), this can be rewritten as

f(z) — f(=)
1 — f(20)f(2)

=[S(f (T (w)))] < |w]

zZ— 20

< , \V/Z, 20 € Dl(O)

1—"2z2
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e The lemma of Schwarz can be generalized further to functions with upper bound M € R,
instead of 1 : we then apply the lemma to %, and M will appear on the right hand side of

the inequality.

e Likewise, if f satisfies the conditions on a disk of radius R instead of the unit disk, we apply
1

the theorem to f(Rz), and = will appear on the right-hand side of the inequality.

b

d

a linear fractional transformation (or bilinear transformation, Mobius transformation) defined as
follows.

Example Let a,b, c,d € C such that det (Z =ad—bc#0,and T : CU{oo} — CU{o0} be

(az+b
if z€ C\ {—d/c}
cz+d az;b ifzeC
Ifc#0, T(z) =<, ; ife=0, T(z) =
- if z=o00 )
c 00 if z=o00
| 00 if z=—d/c
Note that
. az+b 1 ad — be
ifc#0,2zeC\{-d/c}, T(z)—cz—i—d—g {a— <cz+d>] =T30Ty0Ti(2)

1
ifc=0,z¢€C, T(z)za(az%—b)

are composition of maps T;, i = 1,2, 3, where

Ti(2) = cz+d adilation and a translation
1
Ty(z) = - an inversion
z
d—b
T3(z) = - <a C) z a dilation and a translation
c c

and each T; maps {circles and lines} to {circles and lines}, so

e T :{circles and lines} — {circles and lines}

e T is bijective and invertible such that

az+b _ dz —b
Te =0y = To=—0"r, F

Example For each a € C such that |a| < 1, let B,(2) : D;(0) — C be the bilinear transformation
defined by

B.(z) = . % for |z] < 1.
—az

This implies that By(z) = z, and for 0 < |a| < 1, we have

1 1
e B,(z) is analytic throughout |z|] <1 since i = al > 1,
a a
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e B,(z) maps the unit circle |z| = 1 onto |z| = 1 since

z—a z—a _ |z|*—aZ—az+|al?

‘Ba(z)|2 =

= = =1 for|z| =1,
l—azl—az 1—az—az+ |a?|z]? or |2 =1,

this implies that B,(z) : D1(0) — D;(0), i.e. |B,(2)| < 1 for all z € D;(0).

1—|al? 1 _ Z+a
m — B;(CL) = 1_—|a|2 and Bal(Z) = 1+ az = B,a<2). O

e B,(a)=0, Bl(2) =

Corollary (Generalizied Schwarz Lemma) If f : D;(0) — D;(0) is analytic (extending
continuously to the boundary) and f(a) = 0 for some |a| < 1, then

(i) |f(2)] < |Ba(z)| for all z € D;(0),

1

(ii) [f'(a)] < |Bg(a)| = T= o

and equality holds in either (i) or (ii) if and only if f(2) = € B,(2) for some 6 € R.
Proof Let g : D1(0) — C be defined by

flz) _ f(z) = f(a)

Ba(Z) - Ba(z)—Ba(a) ifZ?éCL,
9(z) = .
Bl = @ —laP)  itz=a

For each 0 < r < 1, since ¢ is analytic, |f(z)] < 1 for all z € D1(0) and since |B,(z)| = 1 for all
|z| = 1, we have, by the Maximum Modulus Theorem,

/(=) 1
max |g(z)| = max |g(2)| = max < max .
maxlo(o)l = maxlo()] = o | Ba(2)| ™ Izl=r |Ba(2)|
By letting » — 1, we obtain that
lg(2)| < lim max =1 V2| <1

r=1|zl=r |By(2)|

which implies that
[f(z)]  <I|Ba(z)| V= 6101(0)
/ < B/ - -
F@l < IBi) = {1

If the equality occurs in either case, i.e.

e cither |g(zo)| = 1 for some zy € D1(0), z # a,

1
e orlg(o)] = 1 (@) = =

then g is a constant function on D;(0) with modulus equals to 1, and there exists a 6 € R such
that g(z) = " ¥z € D;(0) which implies that

f(2) = €®B,(2) Vz € D1(0)\ {a} = f(2) = €’ By(2) Vz € Dy(0) since f(a) =0. O

Example Let H = {f | f : D1(0) — D;(0) is anaytic}. Find meax 1F(3)] -
S
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Case 1 Suppose f(%) =0, we have
|f'(3)] < |Bi3(3)| by the Generalized Schwarz Lemma.

Case 2 Suppose f (%) # 0, we consider the map ¢ defined by

Since | f(z)| < 1 is analytic for all [z| < 1, and By /3)(w) is analytic with | By /s)(w)| < 1 for all
jw] <1,

9(2) = Byays)(f(2)) : D1(0) = Dy(0) is analytic on D;(0) with g(1/3) = 0.

Thus, by Case 1, we have
9/ ()] < 1Bis(3)].

Since
: f'(3) Nt
g (1/3) = —3 and 0<1—|f(3)] <1
1- £
this implies that
1 9
1 1 1 1 1
1G] <1dGI<IB5(3)] = 1}16%|f/(§)| =[B3(3)| = To(/32 8 U
Example If f is entire satisfying
1
U@Néumd VzeC\R,
then f = 0.
Proof y
z
X
0 R

For any R > 0 and for each z € C \ R satisfying that |z| = R, note that if

Rez>0 = |(z—R)f(2)| < ‘Z_Rlzsecﬁg\/i forsomeﬁe[o,z],
|Im z| 4
2+ R ™

Rez<0 = |z+R)f(2)] < I |:sec9§\/§ forsome@G[O,Z].
m



Complex Analysis II Chapter 4 Lecture Notes(Continued)

Thus the entire function g defined by g(z) = (2* — R?)f(z) satisfies that
lg(2)| = |2+ R| |z — R||f(2)| <3R VzeC with |2| =

By the Maximum-Modulus Theorem,

9(2) = 12— B |f() <3R V|| <R = |f(2)] < o0

SR Viz| <R, VR>0

By letting R — oo, we obtain that f(z) = 0 for each (fixed) z € C. O

§4 The General form of Cauchy’s Theorem
4.1 Chains and Cycles

Definition Let 2 be an open set in C. A chain in Q is a finite collection v; : [a;, b;] — €,
7 =1,..., N of piecewise continuously differentiable curves in 2.

Writing [' = 1 + 72 + - - - + v for a given chain, we can integrate a continuous function f in 2

along I' as follows:
N
/f(z)dz:z f(z)dz
r j=1 %

A cycle in € is a chain ' = Zﬂ/j where each point z € C is an initial point of just as many of

j=1
the 7; as it is a terminal point. In other words, a cycle is a finite sum of closed curves. As an
illustration, the index of a point z with respect to the cycle I" is

1
n(F,z)—%/FC_Z 27?22 %C—z

Observe that the integrals in the sum on the right-hand side of the last equality above may not
be over closed curves.

4.2 Simple Connectivity

Below, we start this section with an unusual definition for simple connectedness. Its weakness is
that it is not general, in the sense that it cannot be used in R" with n > 3. However, we will show
later in this course that for C, it is equivalent to the more common definition, which says that
any simple closed curve can be shrunk to a point continuously in the set. And the advantage of
our unusual definition is that it is more convenient for the proof of the general form of Cauchy’s
theorem.

Definition An open connected set € C C is said to be simply connected if its complement with
respect to C = C U {o0} is connected, i.e. €2 is simply connected if C \  is connected.

Theorem 14. An open connected set {2 C C is simply connected if and only if n(y, z) = 0 for
all cycles 7 in 2 and all points z ¢ €.

Proof

(=) For any cycle v € Q, since Q C C is simply connected, C \ © is connected and must be in
one of the (interior or exterior) regions determined by . Now co € C\ Q, the set C\ Q must
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be the unbounded region defined by ~. Since lim n(v, z) = 0 and n(y, z) : C\ {v} — Z is

|z| =00
continuous, we have n(y, z) =0V z ¢ Q.

(«<=) Suppose that € is not simply connected, and the complement set C \Q=AUB with A
and B disjoint closed sets, with a shortest distance § > 0 between the two sets. Let us say that
B is the unbounded set, so A is bounded (and compact). We cover A with a net of squares S
whose sides have length £ < §/v/2, constructed in such a way that z, € A (so z ¢ Q) lies at the
center of a square (as shown in the figure).

n
Since A is compact, there exists a finite collection of squares {S;}7_, such that A C U Int S;. Let
j=1

v = Z 0S;, where 0S; is the boundary curve of square S;, and observe first that n(y, z9) = 1
j=1
since 2y belongs to only one of the squares {.S;}7_;.

Furthermore, it is clear that v N B = (). Now, since A C U Int S}, the curve y = 0 (U Sj) is
j=1 j=1

a cycle such that y C v = FNB=0,yNA=10,7 is a cycle in Q and since the integral

corresponding to n(7y, zp), all the sides of the squares contained in A are traversed exactly twice,

in opposite directions, and therefore cancel, so we have

n(¥, z) =n(7, z) =1 forsomey C Q=C\(AUB), and 20 € A (so 2 ¢ Q) O

4.3 Homology

Definition A cycle v in an open set 2 is said to be homologous to zero with respect to € if
n(vy, z) = 0 for all z in the complement of €2 in C.

Remark We write v ~ 0 (mod 2), or simply 7 ~ 0, if the cycle v is homologous to zero with
respect to (2, and write v, ~ 5 when 7, — vy ~ 0. Note that with this notation, the Theorem 14
can be written as follows.
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Theorem An open connected set €2 C C is simply connected if and only if v ~ 0 for all v in Q.
4.4 The General Statement of Cauchy’s Theorem
We now have all the tools required to give Cauchy’s theorem in its most general form.

Theorem 15. (Cauchy’s Theorem) If f is analytic in the open set 2, then / f(z)dz =0 for
.

every cycle v which is homologous to zero in €.

Proof Consider v such that v ~ 0 (mod 2), and the set
E={z2eC\{y} | n(y, 2) = 0}

which is open since n(7, z) : C\ {y} — Z is continuous and {0} is open in Z.
Let g : €2 x 2 — C be defined by

[O-1G)
oo )= (= fz7¢
) if 2= ¢

Then g is continuous in both its variables. Furthermore, for each (y € €2, the function g : Q@ — C
defined by g(z) = g(z,(p) is analytic in  since lin<1 (z—Co)g(z) = lin<1 (z — (o) g(2z,¢0) =0, so
z—(C0 z—(Co

(o is a removable singularity of g.

Consider the function h on C defined by

. /
2mi
Since C\ Q C E, and

/g(z, ()d{z/gf(Tode—f(z)n(% z):/gf(TCld( forall z € QN E,

we have Q U FF = C and the two definitions of h agree on (2N E, so h is defined on all of C.

if z€Q
h(z) =
if ze K

Also since h is analytic in £ by Lemma 3 of 4.2.3, the two definitions of h agree on Q2 N E and
QU FE =C, h is entire if we can prove that h is analytic on €.

Lemma Let [a, b)) C R, Q be an open connected set in C. Suppose that ¢ : Q x [a, b] — C is
continuous, and the function z — ¢(z, t) is analytic on Q for each ¢ € [a, b]. Then the function
F : Q) — C defined by

b
F(z) = / o(z, t)dt
is analytic on €.

Proof Let z5 € 2, and let R > 0 be such that Dg(z9) C .

For each z € Dg(z), since p(z, t) is analytic on € for each t € [a, b] and by the Cauchy integral
formula, we have

1 b d¢
2_7TZ [¢—20|=R (/‘1 P60 dt) E
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b
where the last equality holds by the Fubini’s Theorem. Now, / ©(C, t)dt is a continuous

function of ¢, F is analytic on Dg(z) by Lemma 3 of 4.2.3. O

Proof of Theorem 15 (cont’d) We conclude that h is entire. Now, for |z| sufficiently large,
since n(y, z) = 0, we have z € E and thus

ua::é;/"g%%dc

Also, since f is bounded on v, lim h(z) = 0, we conclude that h is bounded, and h = 0 by

|z|] =00
Liouville’s theorem.

Hence, for each z € Q \ v, we have

o [ 9 Qdc=0 = nr, ) = o [

271 .

£(©)
=

This is the generalized version of Cauchy’s integral formula, which we can now use to prove
Theorem 15 (Cauchy’s Theorem).

Let zp € Q\ 7, and let F(z) = (2 — 20) f(z) for each z € Q. Then

/V f(z)dz :[y A 2min(y, z0)F(z) = 0

Z— 20
This completes this very elegant proof, first proposed by John Dixon in the Proceedings of the
American Mathematical Society, Volume 29, Number 3, August 1971. [
Corollary 1. If f is analytic in a simply connected open set €2, then / f(z)dz =0 for all cycles
v
in .
Proof This follows directly from Cauchy’s Theorem (Theorem 15). [

Corollary 2. If f is analytic and nonzero in a simply connected open region €2, then it is possible
to define single-valued analytic branches of In [f(2)] and {/f(z) in (.

Proof Since f is analytic and nonzero, f'(z)/f(z) is analytic and

!/
/ l]; ((Z)) dz =0 for all cycles in €2 by Cauchy’s theorem.
z
.

By the Fundamental Theorem of Calculus, there exists an analytic function F' (called a primitive
of f) such that

! d
F'(z) = J}((ZZ)) VzeQ < P [f(z)e_F(z)} =0VzeQ
— f(2) = AeFP V2 € Q, for some A€ C\ {0}
Choose zg €  and one of the infinitely many values of In [f(2o)]. Since

exp [F(z) — F(z0) +In [f(20)]] = @ e Fz0) f(z0) = f(2)

we can therefore define a single-valued, analytic branch of the logarithm of f as

In f(2) = F(2) — F(2) + In f(2)

1
The definition of {/f follows from this result, as V z € Q we write {/f = exp [— In (f(z))} . g
n
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§5 The Calculus of Residues
5.1 The Residue Theorem

Definition Let €2 be an open connected set in C, a be a point in €2, f be an analytic function
in Q\ {a}, and Cg(a) be a circle in Q with center a. The residue of f at a, denoted Res._, f(2),

is defined by
1

f(z)dz
27TZ /CR(a) ( )

Remark Note that this definition is independent of the choice of the radius R > 0 of the circle
C. For example, if Cr/(a) is a circle centered in a and contained in €2, and is v the cycle made of
the piecewise differentiable green, red and black arcs shown in the figure,

Res.—, f(z) =

Circle with radius R’

Circle with radius R

-
m

then, by the general form of Cauchy’s Theorem (Theorem 15), we have
/f(z)dzzO = f(z)dz= f(z)dz+ I,
¥ 71 2
where I, is the contribution from the two black horizontal segments separated by a distance e.

Since f is continuous in Q \ {a}, and lin% I. =0, we have
e—

/ f(2)dz = lim f(z)dz = lim ( f(z) dz+_75> :/ f(z)dz
C (a) e—0 %) e—0 Yo Cr(a)

In general, if f is analytic in the open connected set €2 except for finitely many singularities a;,
and if v is a cycle in Q" = Q\ {a;};=1. n which is homologous to zero with respect to Q, then
N

v o~ Z n(7, a;)C; (mod '), where C; is any circle in ' with center a;, and, by the general
formulation of Cauchy’s theorem, we have

[ =3 n000) [ s = 5 [ 500a =30t @) Resea, 1) 20

21 .

The result can naturally be extended to the case in which f has infinitely many singularities, as
we have done in 4.3.3. The sum in (26) is always finite, and known as the following theorem.
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Theorem 17. (Residue Theorem) Let f be analytic except for isolated singularities a; in an
open connected set 2. Then

for any cycle v which is homologous to zero in €2 and does not pass through any of the points
a;j, and the sum (27) is finite.

Remark As one may expect, the residue theorem is particularly convenient to use when ~ is
such that Va;, n(y, a;) =0or 1.

More importantly, it is only useful as a tool for integration if there is a simple method to compute
residues. When f has essential singularities, such a method is not available, and residue calculus
is not particularly useful.

However, if f has a pole of order N at a, then g(z) = (z —a)" f(2) is analytic in a neighborhood
of a. Integrating along a circle C' centered in a and in that neighborhood, we may write

g D(a) = <N__1)! /C 9(2) dz = (N —1)!Res,—, f(2)

27i (z —a)V
Hence,
1 dN—l N
Reseca f(2) = gy ot |G =@ 1) | (28)
In particular, if f(z) = %, h has a simple zero at a and g(a) # 0, then f has a simple pole at
2

a with

_ iy B 9)9(2) _ 9(a)
Res.., f(2) = lim S0 - 2

Example Use the residue theorem to compute

eiz
7{ — dz
|z|=1 22

where the circle is traversed in the counterclockwise direction.
5.2 The Argument Principle

Theorem 18. (Argument Principle II) If f is meromorphic in an open connected set €2, with
zeros a; and poles by, then

1 z
5 ) dz = Zn Y, a; ;n(% br) (29)

for every cycle v which is homologous to zero in €2 and does not pass through any of the zeros
and poles. The sums in (29) are finite, and multiple zeros and poles have to be repeated as
many times as their order indicates, i.e. if a; is a zero of order N; > 0, then the term n(y, a;) is
repeated N; times and if by, is a zero of order Ny < 0, then the term n(v, by) is repeated — N,
times in the sum.
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Proof Let us first assume that the function has a finite number of zeros and poles, and call K
that number. Consider the orders N; of the zeros and poles z; of f in Q. N; > 0 if z; is a zero
of f, N; <0if z; is a pole of f. Let

,’:]w

(z—25)"
J:1

Note that g only has removable singularities in €2, so we can view it as analytic in 2. Furthermore,

g does not have zeros inside 2. Writing f(z H z — zj) Ni and taking the logarithmic

7j=1
derivative of that equality for z # z;, we find

F2) N d)
i) & o)

Integrating this equality along any cycle v which is homologous to zero in {2 and does not pass
/
through any z;, we get % dz = 0 by Cauchy’s Theorem, and
v 9(z

f z) /
dz = n(~, z: )N
27i (2) ~ omi Z/—/] T Z (v, 2)N;,

J=1

by the definition of the index of z; with respect to v (or by the residue theorem). [

Remark The proof can be extended to the situation in which the function f may have an infinite
number of zeros and/or poles, using the same method as we did in 4.3.3 to show that the formula
n (29) remains true, with the sums still finite.

Corollary (Rouché’s Theorem) Let v be a cycle which is homologous to zero in the open
connected set 2 and such that n(y, z) is either 0 or 1 for all z € Q such that z ¢ ~. Suppose
that f and g are analytic in 2, and that |f(z) — g(z)| < |f(z)] for all z € 4. Then f and ¢ have
the same number of zeros enclosed by .

Proof Since |f(z) — g(2)] < |f(2)| for all z € 7, f(2) # 0 and g(z) # 0 for all z € v, and

W(z) = % satisfies that |¢(z) — 1| < 1 for all z € ~.

e |r—1] =1

Hence,
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Now, let N, be the number of zeros of g inside «, and Ny the number of zeros of f inside v. By
the argument principle,

Y O _
O—Lw(z)dz—Ng N; < N;=N, O

Example Consider the polynomial z* — 6z + 3. How many zeros does it have in the annulus
between |z| =1 and |z| =27

Start with v, : |2| = 2, and take fi(z) = 2*, g1(2) = 2* — 62 + 3.
Vzen, [f1(z) —gi(2)] = |62 =3 <15 <16 = | f1(2)]

Hence both fi(z) and g(z) = z* — 62 + 3 have 4 zeros inside |z| = 2.
Now consider 7, : |z| = 1, and define fo(2) = —62, go(2) = 2* — 62 + 3.

Vzem, [fa(z) —ga(2) =1 +3] <4 <6 =|fa(2)]

So both fy(2) and go(2) = 2* — 62 + 3 have 1 zero inside |z| = 1.
We conclude that z* — 62 + 3 = 0 has 3 roots in the annulus. [

§6 Harmonic Functions
6.1 Definition and Basic Properties

On several occasions in this course we pointed out close links between results obtained for analytic
functions and results concerning harmonic functions we may already know from courses on Partial
Differential Equations. The purpose of this lecture is to give these links a rigorous background.

Definition A function u : (z, y) € Q — R is harmonic in Q if u € C*(9) and satisfies Laplace’s
equation

Ou  O*u
Remark Note that

o if f(2) = f(z+iy) =u(z, y) + w(z, y) is analytic in 2, then v and v satisfy the Cauchy-
Riemann equations, and are therefore harmonic in 2.
O )
e if u is harmonic in €, then g(z) = O—M — ia—u is analytic in €, since the real and imaginary
)z y
parts of g satisfy the Cauchy-Riemann equations.

e u(zr,y)=In <\/ x? + y2> is harmonic on R?\{0} without a single-valued conjugate function.

Question Under which conditions does a harmonic function u on €2 have a harmonic conjugate
v : £ — R such that f =« 4+ iv is analytic on Q7

Definition Let u : (z,y) € Q@ — R be a smooth function. The conjugate differential of u,

denoted  du, is defined by

*du = —@dm—%@dy

Ou

3 dy, and « is called the Hodge x-operator.
Y

where the differential du = g_u dx +
By
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0 0
Remark Observe that if u is harmonic function in Q, then f(z) = A LA analytic in €2,

ox oy

and we may write the differential

Ju ou , ou Ju ,
fdz= (%dx—l—a—ydy) +1i <_8ydx+8xdy> =du+1i * du

Lemma Let €2 be an open set in C. If u is harmonic function in {2, then / *du = 0 for every

.
cycle v homologous to zero in €.

Proof If w is harmonic in 2, since f(z) = u, — iu, is analytic in Q, fdz = du+ i * du,

° / f(2)dz = 0 for every cycle v homologous to zero in Q2 by Cauchy’s theorem,
v

. / du = 0 for every cycle v in {2 by the Fundamental Theorem of Calculus,
gl

we have

O:/f(z)dz:/du+i/*du:i/*du = /*duzO Vv ~0 (mod Q). O
v v v v v

Theorem In a simply connected open set €2, any harmonic function u has a single-valued con-
jugate function v which is uniquely determined up to an additive constant.

Proof Existence Since € is simply connected, and / *du = 0 for all cycles v in €2, so, by the

.
Independence of Path Theorem (4.1.3 Theorem 1), xdu = —u,dx + u,dy is an exact differential
on €, i.e. there is a single-valued function v = v(z, y) such that

ov ou ov  Ou

dr oy ' Oy Oz
and this v is a single-valued conjugate function of wu.
Uniqueness If v; and vy are two single-valued conjugate functions of u, then f; = u + iv; and
f2 = u + ivy are both analytic on Q, and f; — fo = i (v; — v9) is analytic on 2, i.e. f; — fy is
analytic from the open set 2 into the imaginary axis. By the open mapping theorem, f; — f5
must be a constant, that is, there exists a constant K € R such that f; = fo +iK. [
6.2 The Mean-Value Property

In what follows, we will often use (z, y) € R? and z = z + iy € C interchangeably, and allow
ourselves this abuse of notation for the sake of the simplicity of the expressions.

Theorem 20. (Mean-Value Theorem) Let €2 be an open connected set in C, u: 2 — R be a
harmonic function on €2, and Dg(z9) C 2 be a closed disk in Q. Then

1 27 )
gy / u (zo + Rew) do
0

u(z0) =

Proof Since Dg(zp) C €, there exists a (simply connected) open disk Dy (2y) such that Dg(zy) C
Dr/(z9) C Q. By a Theorem 4.6.1, u has a harmonic conjugate v on Dg/(2p), and the function
f = u+iv is analytic on Dgi(2p). So, by the Cauchy Integral Formula, we have

20 L Mdz ! " 20 + Re™) do
o) =57 | | #to+ men

210 J|a—so)=r % — %0 2m
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Taking the real part of this equality, we get the Mean-Value Theorem for uv. [

Theorem 21. A nonconstant harmonic function has neither a maximum nor a minimum in any
open connected set in which it is defined. Consequently, if a nonconstant harmonic function is
defined on a closed bounded set F, its maximum and minimum are taken on the boundary of E.

Proof Suppose u reaches a maximum M at a point 2y in the interior of €2. There exists R > 0
such that Dg(z9) C Q and Vz € Dg(z0), u(z) < u(zp). Suppose there exists a € Dg(zy) such
that u(a) < u(zp) = M. Consider the circle with radius r centered in 2y and going through a, By
the mean-value theorem,

1

M =u(z) = 7

21
/ U (zo —I—Teie) do < M
0

This is a contradiction.

To obtain the result regarding the minimum, apply the same proof to the harmonic function
w=—u 4

Corollary If u; and us are two continuous functions on a closed bounded set E which are
harmonic in the interior of £ and such that u; = uy on the boundary of E, then u; = uy in E.

In other words, functions satisfying the conditions above are uniquely determined by their values
on the boundary.

6.3 Poisson’s Formula

Theorem 22. (Poisson’s Formula) Suppose that u is harmonic on Dg(0) and continuous on
Dr(0). Then the value of u at each point a = re'? € Dg(0) is given by

1 R? — |al? 1 z+a
u(a) = 5- /Z|R T = 5 /MR Re (Z - a) u(z)dd (30)

= u(re'?) = L / B - rf” u(Re™) db
21 Jy—r R? —2Rrcos(0 — ) + r?

Proof For each a € Dg(0), and for each |a| < p < R, let S : D1(0) — D,(0) be the onto linear
transformation defined by

2= 50 =p-Boapl6) = - f:é%lj)c B p;pf ;;o

such that S(0) = a. Since S is analytic in D,(0) and u is harmonic on D,(0), the function
¢ € Di(0) = u(S5(¢)) is harmonic on D;(0). By the mean value property, we can write

u(@) = u(S(0) = = /< |:1“<5<<>>d<: / /|< |:1u<s<<>>%

T 2mi C—0 Cor ¢
Since z = S(¢) = p- B_4/,(¢) : D1(0) — D,(0) is bijective with inverse S~'(z) given by
N 1 p(z—a) d¢ 1 a
— 1 — . [ _— =
(=S (z)—p Bajp(z/p) po—— = c z—a+p2—az dz

and since |z| = [S(¢)] = p <= |¢| = 1, so by setting z = pe?, dz = izdf and p* = 2Z on

|z| = p, we have
- 2 |12
d Y gp— i (=1 g
|z —al?

¢
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so that

1 2 2 1 2 2
u(a) = / wu(z) dd Vl]a|<p<R = u(a) = / Mu(z) db
|z1=p

T or |z — al? T or s=r 12— al?

by letting p — R and the uniform continuity of u on Dg(0). This formula is known as Poisson’s
formula. We may get an alternate form for it by observing that

—RZ_‘(LP:RG —RQ_MZ = Re _c +_5_ 21 Z+a+f+€ = Re e
|z — al? |z — al? z—a Z-—a 2\z—a ZzZ-a z—a
We have shown that Poisson’s formula could also be written as

1 z+a
= — do
u(a) o Re (z - a) u(z)

which may yet again be rewritten as follows: for each a € Dg(0),

u(a) = Re (L / 2 +aul) dz> (31)

2 Jy—gp 2 —a =z

Since the function in parenthesis (31) is an analytic function of a for all |a| < R (cf. 4.2.3 Lemma
3), the expression above implies that u is the real part of the analytic function

R ¢+ 2z u)
f(é) n 21 I¢|=R C* z C

which is known as Schwarz’s formula. O

d+iK , KeR (32)

Remark One can prove that the Poisson’s Formula holds for the closed disk Dz(0) as follows:
For each 0 < § < 1, since the function u be defined by w(z) := u(dz) is harmonic in Dy(0), so,
for each a € Dg(0), we can write

~ 1 R%* —|a|* - 1 R? — |a?
u(da) = u(a —0u(z)df = — —0u(dz) do
o) =) =5 [ @a=q [ 52

" or |z — al? 27 |z — al?

Now, u is continuous on the compact set Dz(0), so it is uniformly continuous on that set by the
Heine-Cantor theorem. Taking the limit 6 — 1 in the modified Poisson’s formula above, we find
by uniform continuity that Poisson’s Formula holds for the closed disk Dg(0) as well.

6.4 Schwarz’s Theorem

Poisson’s formula can be viewed as a way to define a harmonic function inside a disk from the
values u(z) on the circle |z| = R of a function v which may only be defined on that circle.

A natural question then is: does this function have boundary value u(z) on |z| = R?
Schwarz’s theorem, given below, answers this question.

Theorem 23. (Schwarz’s Theorem) For each z € D;(0) and 6 € R, let K (0, z) be the Poisson

kernel defined by
e 4 2
K(0,z) = Re ( . )

e — 2
Given a piecewise continuous function w on [0, 27|, the Poisson integral
1 e + 2

Pu(z) = % /0% K (9, 2) u(6) df = 0% Re (eie - Z) u(0) df
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is harmonic in Dy1(0) and  lim P, (z) = u(fy) if u is continuous at 6o, i.e. P,(z) is the unique
z—etf0

solution to the Dirichlet problem

Af(z)=0 if z € D1(0)
f(z) =u(0) if 2=¢€" € 0D,(0)

Remark Note that if z = re’ € D;(0), since

i0 —i(0-) 0
e ‘I‘Zi]-‘f'/re n_ —in(6—¢) __ TL—WL@(,D
T T (1+7‘e Zore 1—1—22
. K(6.2) = R e + 2 1+2R§:n—in(9—tp) 1—7?
’Z = [ - — e re =
il — - gt 1 —2rcos(f — ) +r?

1 27
:>K(9,z)>0‘v’9€R,2—/ K(0,z)d0 =1, and V6 > 0 such that
T Jo

0<6<|0—¢| <, since 1 —2rcos(d — ) +7r? > r*sin®§ > 0,
lim K(0,re’) = 0 uniformly in 6 for all 0 < § < [0 — | < 7

r—1-

Remark Let PC([0,27]) = {u : [0,27] — R | u is piecewise continuous on [0, 27|}. Then

e P, is harmonic in D;(0) for each u € PC ([0, 27]), since it is the real part of an analytic function
defined by Schwarz’s formula in the proof of Poisson Formula (Theorem 22).

e P is a linear operator from PC ([0, 27]) to harmonic functions P, on D;(0) since Py 4y, =
P, + P,, and P., = cP, for any u;, us € PC([0,27]) and constant ¢ € R.

Since P, =1, P. = cfor all c € R, and P, > 0 for all u € PC ([0, 27]) such that u(d) > 0 for all
6 € [0, 27|, we have m < P, < M if u € PC ([0, 27]) such that m < wu(f) < M for all § € [0, 2x].

Proof Without loss of generality, assume u(6y) = 0 (otherwise, consider v — u(6p) and note that
Pufu(eo) == Pu - Pu(eo) = Pu - U(QO))

e Ve > 0, since u is continuous at 0y, there exists an open arc Cy in dD;(0) such that e e O,
and |u(0)| < /2 for all " € C,.

e Let C1 = 0D;(0) \ Cy be the complement C of Cy in dD;(0), and u, uy be defined by

u(f)  for @ such that e € C} u(f)  for 6 such that ¥ € C,
uy (0) = . uy(f) = .
0 otherwise 0 otherwise
lHD(s(efﬁw

D1 (0)
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Note that

— P, = P,, + P,, by the linearity of P, where P,, and P,, are harmonic everywhere except on
Cy and Cy, respectively, since they are line integrals over C; or Cy (cf. 4.2.3 Lemma 3).

1 27
— |Pu,(2)| < g for all z € Dy(0) since |ua(0)| < g for all # € [0, 27] and 2—/ K(0,z)do = 1.
T Jo

— for each € > 0, since P,, is harmonic everywhere except on C;, P,, is continuous at e e O,

and Py, is zero on Cy by the remark above, so ~ lim P, (z) = u(fp) = 0 and there exists a
|z|<1, z—e*P0

6 > 0 such that if z € D(0) and |z — ¢'®| < §, then |P,, (2)| < g

We conclude that if z € D;(0) such that |z — | < 6, then
|Pu(2)] < [P (2)] + [Py ()] < €

Since ¢ is arbitrary, this completes our proof. [
6.5 The Reflection Principle

The idea of the Schwarz reflection principle is to extend an analytic function f : Q@ — C to a
larger domain, with the ultimate goal to find the maximal domain on which f can be defined
and analytic.

Recall that if f(z) = u(z) + iv(z) is analytic on Q, then f(Z) = u(Z) — iv(Z) is analytic on
Q={zeC | zeQ} by the definition.
Now, if f is an analytic function defined on an open connected set €2 which is symmetric about

the z-axis, and f(z) = f(Z), then f is real on the intersection of the z-axis with Q. We have the
following converse:

Theorem 24. Let ) be an open connected set which is symmetric with respect to the xz-axis, and
let QF =QN{Im(z) >0} and o = QN {Im (z) = 0}. If f is continuous on QF U o, analytic on
Q" and real for all 2 € o, then f has an analytic continuation to all of Q such that f(z) = f(2).

The theorem above follows from the following theorem regarding harmonic functions, which we
will prove first:

Theorem 24'. Suppose v is continuous on Q2+ U o, harmonic on 27, and zero on o. Then v has
a harmonic extension to € satisfying v(z) = —v(Z).

Proof of Theorem 24" Let 2~ = QN {Im(z) < 0}, and V be an extension on €2 defined by

v(2) if z € QF,
Vi(z) = 0 if z € o,
—v(Z) if z€ Q.

To show that V' is harmonic in €2, it suffices to show that V' is harmonic on o since v(z) = Im f(z)
and —v(z) = Im f(Z) are harmonic in Q" and Q~, respectively.

For each zy € o, let 6 > 0 be small enough such that Ds(z) C
integral of V' with respect to Ds(zp). Then Py is harmonic in Ds(2
by Schwarz’s Theorem (Theorem 23). Since

and Py be the Poisson
nd continuous on Ds(2g)

Q,
) a

e V — Py is harmonic in the upper half disk Ds(zp) N (Q+ U U) ,
e VV — Py =0 on the upper semi-circle Cs(zp) N (Q+ U a) by Schwarz’s Theorem,
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e V(z) =0 on o by construction, and if z € o,

1 2 5ei9+z ] 1 2w 62_’2:'2 )
P = — Re | ——Z2 ) V(6 do = — — " V(e dh =0
v(z) 27T/0 ‘ ((561‘9—2’) (9¢7) 21 Jo ‘56i9_z|2 (9e™) ’

where the last equality follows from the symmetry of the integrand,

we conclude that V = Py in Ds(z) N (Q+ U 0) by the maximum principle. Similarly, we can
show that V = Py in Ds(20) N (2~ Uo). Hence, V = Py in Ds(z), and V as constructed above
is harmonic in zy. Since zg is an arbitrary point in o, V' is harmonic on o.

Applying the maximum principle to V' on overlapping disks, v can be extended to a harmonic
function V' defined on all of 2. [

Proof of Theorem 24 Consider f = u+iv defined on O, We want to verify that the extension
of f defined by f(z) = f(Z) = u(Z) — iv(Z) is an analytic extension of f on all of €.

Let 2y € o, 55(20) C Q, and V be a harmonic extension of v to Ds(zg) as before. Since —v has a
conjugate harmonic function u on Ds(z5) N2, let U be the harmonic conjugate of V' defined by

u(z)  if 2 € QT N Ds(z),
U(z)=<X 0 if z€ o N Ds(z),
u(Z) if z€ Q™ N Ds(2).

Consider the function g(z) := U(z) — U(Z) on Ds(z). Note that

e since g is harmonic on Ds(z), the function h(z) = % — z? is analytic on Ds(zp).
Z Y
e since g(z) =0 for all z € o N Ds(2), g—g(z) =0 for all z € o N Ds(2).
x
0 ou ov
. a—z(z) = 20—y(z) = —2%(2) =0 for all z € 0 N Ds(20)-
. . dg .9y .
Thus, the analytic function h(z) := 92 9y = 0 for all z € 0N Ds(2p). So, by the Uniqueness
Oy
9, 0
Theorem, h = 0 <= % =0= a—g in Ds(z0), that is, g(z) = 0 <= U(z) = U(Z) for all

z € Ds(zp) which implies that f(z) = U(z) + iV (2) is an appropriate analytic continuation of f
on all of Ds(zp) such that f(z) = f(Z).

By applying the maximum principle to U on overlapping disks, U and hence f can be extended
onall of Q. [0

4.5.3 Evaluation of Definite Integrals

Recall that if f is analytic in a simply connected domain D except for isolated singularities at
{ag}it,, and if 7y is a closed curve not intersecting any of the singularities, then

[ £ =2m Y n(an) Res (f:),
v k=1

Page 41



Complex Analysis II Chapter 4 Lecture Notes(Continued)

Type (1) Integrals of the Form / x)/Q(x)) dx, where P, Q) are polynomials such that
Q(z) # 0 for z € R, and deg Q > deg P + 2. By the Residue Theorem,

] B Ene ().

where {ay}jt, are singularities of QEZ in{z|Imz>0}, Cp =1, U[-R, R], and
o lp— >0} ={Re" |0 <t <7},

e [—R, R] is the line segment from z = —R to z = R.

AN
iR

Iy [—R, R] = CR F/f

P
This implies that lim ’ / (2) dz| =0, and

R—oo | J1, Q(z)

ca =i (g | aie] - ag e - ()

where {ay}t, are singularities of P(2)/Q(2) in {z | Imz > 0}.

< 1
Example Evaluate / — dx.
A |
1 .
Solution Since —; | has simple poles at ay = ' "/4T*=D7/2) ingide Cp foreach R > 1, k =1, 2,
z
with . .
ay,
Res (_Z4+1;Oék) - 4@2 :_Z fOI‘lC:].,2,
SO

© ] R 2 1 2
dxr = lim dr = lim dz = 2mi Z Res ray | = M
| R—oo |_pat+1 R—oo o z4 +1 — 2441 2

1

dx.
6+ 1 v

Example Evaluate /

(e o]

Type (2) Integrals of the Form/ (2)/Q(x)) cos x dx or/ (P(x)/Q(z)) sinx dx, where

P, @ are polynomials such that Q(x ) # 0 for real x (except perhaps at a zero of cosz or sinx),
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and deg ) > deg P + 1. Applying the Residue Theorem to (P(z)/Q(2)) e’ around Cg

RIEEO/CR Q(z)e dZ—QWZ;ReS (Q(z)e ;ozk),

where {ay}i, are singularities of P(2)/Q(z) in {z | Imz > 0}, Cr = I', U [ R, R] as above.

h/A Rtan6
R2 _p2 l R
: : P(2) K
Since deg (Q > deg P + 1, there exists K, M > 0 such that o) < 7 for all |z| = R > M. Let
z
V3 h? 3 h? 1
h<7R < ES— < 1—§2—andFP—AUB where
A={]2|=R,0<T <h}:>/ydy QRO < 2Rtand — 2R ——'— <2 _y
e A={|z| =R, 0<Imz < z| = < anf) = ————<—=4h,
A VR —12 12
o B={|z|=R,Imz>h} = / ™| 1R,
JB
Now }eiz| = |em_y‘ = e Y, we have ‘eiz‘ <1for z € A, }eiz| <e M for z € B, and
P , K 3 " P(z) .. K
(Zi e'? dz‘ < 7 -4h for h < gR and i QE:’; e“dz| < E\ e " 1R,
P(z)
so by setting h = VR R/2 and letting R — oo, we have hm )e” dz| =0, and

[ R | Baoenn ()

where {ay}, are singularities of P(z)/Q(z) in {z | Imz > 0}.
* sinx
dzx.

Example Evaluate /

o X

Solution Since

e e (:1:)% 0 (Zx)2k+1 B o
-5 Z(Qk)!+ Ok ose s

k=

=)
b
Il

o

. sinzx sin x e —1
and lim =1, we have =Im and
z—0 g X
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iz

Since is analytic for all z # 0 and has a removable singularity at z = 0, so by Cauchy’s
Theorem,
0:/ ¢ dz:/ ¢ d:c—l—/ ‘ dz for all R > 0.
Cr z -R T I'r z
Thus
R . .
w2 1 1 _ plz 1 1z
lim dr = lim ¢ dz = lim —dz — lim c dz = mi,
R— | _p R—oo J1 z R—oo J1 2 R—oo Jap 2

where A = {|z2| = R, Imz < VR} and B — {|z| = R. Im > > /I?} and

/ e dr = Im / ¢ dr = Im ( lim / ¢ dm) =Im < lim / ¢ dz) =T.
o0 X o x Rooo | p T R—oo J1 Z

Definition Let f: R — R or f : R — C. The Fourier transform of f is given by

fly) = /OO f(z)e 2™ dy.

The inversion formula is

f(x) = / Fly)e dy.

1 ~ < 1 :
Example Let f(x) = for x € R. Find f(y) = / e~ 2 dy,

1+ 22 o 1+ 22
For y < 0and z =z +in € {|z| = R | n > 0}, since |[e">™*| = |e~2miv(atin)| — o2mm < 0 — 1,
y |e=2miv7| |z < 1 / |dz| . TR 0. and si (Ci) = 1 L
im —————— < lim = lim =0, and since n i) = 1, we have
Rooo Jr 1422 T Roeo )i 2P—1 RS RZ—1 o ’

iR

2z =x 4 in = Re"

R R 672my:1: 6727rzyz

fly) = lim dr = lim

R—oo | _p + 22 R—o00 Cr 1+ 22

6727riyz 627ry

dz=2miRes | ——=;i | = 2mi - — eV,
1+ 22

For y > 0and z = x +in € {|z| = R | n < 0}, since |e™2"¥*| = |e~2miw(atin)| — 2mm < 0 —

, le™2™W%| |dz| , |dz| , TR _ ,
I%H}Olo . Ty < nglgo CP—1 = ngrolo o1 0, and since n(Cg,7) = 1, we have
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z=ugx+in= Re "

I'U[-R,R] = Cp

iR
R R e~ 2miyz e 2miyz e 2miyz
= lim dr = lim dz =27mi-n(Cgr,—i)Res | ———; —1
f<y) R—o00 7R1—|—£L‘2 R—o00 Cr 1+22 ( r ) (1+22 )
e—27ry oy
= —27i - =me ™
T —9; T

Hence we have

~ > 1 o me?™  ify <0
y) = ——e MWy = - =7me 7 vy eR.
) /—oo 1+ 22 {W@‘QW ify>0 Y

[ee]

Type (3A) Integral of the Form / (P(x)/Q(x)) dx, where P, () be polynomials such that

0
deg @ > deg P+ 2 and Q(x) # 0 for = > 0. Applying the Residue Theorem to (P(z)/Q(z))log =
around C'p ., we have

LUl'p,UILL,UC. :CR,E

PR o (P(z) )
lim lim log zdz = 2mi Res log z; a. |
R—o00e—0 Cre Q(Z) & ; Q(Z) & F

where {a;}j., are singularities of P(2)/Q(z), Cr. =1, Ul U Iy U C. such that

e [, is the line segment from z = ic to z = VR? — &2 + e,
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e | is the circular arc of radius R from > — V72 — =2 +icto 2 =V R? — =2 — e,
e /5 is the line segment from z = vV R? — €2 — i to z = —ie,

e (. is the circular arc of radius € from z = —ie to z = ic.

Note that for R > 1 > ¢ > 0, the inside of (. is a simply connected domain not containing
0 and logz = log|z| + iArgz is analytic in C\ {z € R | z < 0} if Argz is defined such that
0 < Argz < 2m.

Since P(z)/Q(z) is continuous at 0, |log z| < log |z| 4+ 27 for z € C., and since (|7(2)]/|Q(2)]) <
3/|=|* for some constant B and for » < ',
lim lim Pz) logzdz =0,
R—o0e—=0 [ o Q(z)
P <P
lim lim/ (2) log zdz = (z) log x dx,
Ro0e—0 J 1 Q(2) 0o Qx)
- P(z) = P(x) :
lim hm/ log zdz = —/ log x 4 27i) dx,
A a0 , Q) )
* P(x) — <P(z) ) : .
— dr = — Res log z; . | , where {a4})2, are singularities of P(z)/Q(z).
[ 4= 2omes (g ez (o ()/Q(2)
. 1
Example Since ay = ' (™/3T2(=17/3) i 4 simple pole of %, SO
z
1 1 j\m/3+2(k—1)n/3
Res (%87 o, ) = 108 _ _ilm/3 20k ZVm/Sla gy o5
2 +1 3ai 3

and

3+ 1 2+ 1 3 9

/°° 1 3" Res < log 2 'ak> _ S iln/3 4 2(k — 1) /3]ou _ 27r\/§.
0 k=1

P(x)
Q(x)

deg P + 2 and Q(x) # 0 for x > a, can be evaluated in a similar manner by considering

P(z) P(x) L “ . P(2) e
CR.e Q(z) Q(T)d ;R (Q(z) log( ); k:),

where C'p . is a contour as follows and {«y};", are singularities of P(2)/Q(%).

Type (3B) Integrals of the Form / dz, where P, () are polynomials such that deg ) >

log(z —a)dz = /

xafl

Type (3C) Integrals of the Form / 0@
0 T
deg@ > 1 and Q(z) # 0 for z > 0, can also be evaluated by considering

dr, where 0 < a < 1, @) is a polynomial such that

Za—l
dz,
Ch.e Q(2)
where C'p . is the “keyhole” contour as in (3A). Since
ol ela—Dlogz — pa—l along I,
207 = 4
e(afl)(logz+27rz) _ xa—1627ri(o¢—1) along ]27
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A

Lul'pUI,UC: =Chre

we have

a—1

o a—1 m
1 _ 2rila=1) / L dr =921 S Res (Z; 0%) ., where {a}7, are zeros of Q(z).
[ l), aw e

Example Since z = —1 is the only simple pole of 2 7/2/ (1 + 2) with Res (z7"/2/ (1 + 2); —1) =
—1, SO

00 —1+1/2

) Z_1+1/2 00 1
[1 — 627”(_”1/2)] / dxr = 2mi Res ( ;—1) =21 — / ——dr=m
o l1+=x 142 o Vz(l+x)

2m
Type (4) Integrals of the Form / R(cosf,sinf) df, where R is a rational function defined on
0

the unit circle |z| = 1. By setting z = ¢ for 0 < 0 < 27, we have

d 0 —i6 1 1 0 _ —if 1 1
d@z—z, cosezi=—<2+—), Sin@:l:_-(z__)
z

1z 2 2 2 2 z
2
1 -1 d
= / R(cos@,sin@)d@-/ R<z+ /Z, - /Z> &~
0 2]=1 2 21 12
and note that the last contour integral, as always, can be evaluated by the Residue Theorem.
Example
2
T df 2 dz 1 2
/0 2+ cos b i/|z|:122+4z+1 e <22+4z+1’\/_ > 37V

Type (5) Sums of the Form Zf(n), where |f(2)| < A/|z|? so that lim zf(z) = 0. Since

o
cot Tz = cosmz/ sinwz has a simple pole at each integer z = n with

Res (

TCOSTZ > T cosnm 1
= —— y

: in
SINTTZ T COSNm
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and by applying the Residue Theorem to the integral

(2) -7 cot mz dz,

Cn
i(N + 3)
h /\CN
N N+1
~(N+1) ’
éN —i(N+1)
where (' is a simple closed contour enclosing the integers n = 0, 1, +2, ..., /N and the poles

of f which we assume to be finite in number, we have

N m
/ 7 f(z) cotmzdz = 2mi Z Res (mf(z)cotmz;n) + Z Res (mf(z) cot mz; ak)]
Cn k=1

_’Vl:—N, n#ak =

B N m
= 2mi E f(n)+ E Res (mf(z)cotmz; ag) | ,

Ln=—N, n#ay k=1

where {ay}L, are poles of f. Note that

COS T2 eiwz + e—iwz ei27rz + 1 €i27rm—27ry + 1
cotmz = — =1 — — = — = 1— ,
sin 7wz einz _ p—inz 62271'2’ -1 62271':0727ry -1

and

° ifz:i(N—i—%) + 1y € Cy, then

‘ . | 6im’727ry +1 1— 67271'3/ _ 1+ 67277_1/
€:|:7rz—2ﬂ'y -1 1+ e—2my 1+ e—2my
o if z=u4 (N +1)ieCy, then
14+ e$7r(2]\7+1) 1 +67ﬂ(2N+1) 14 e ™
[cot mz| < ’ 1 _ eFn2NTL) | ‘ 1 — e—m@N+L) | = '1 Jp— 2.
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This implies that there exists a constant A such that

/ 7 f(z) cot mzdz| < Amax |zf(z)].
CN ZEC;V
Since lim zf(z) = 0, we have
zZ—00
0= ]\}1_{1;0 . 7 f(z) cot Tz dz = 2mi [ Z?é f(n) + ;Res (mf(2)cot mz;ap) |,
n=—00, Nn#ay =
and hence

o0

(%) Z f(n)=— Z Res (mf(z)cotmz; o), where {ag}, are poles of f.
k=1

n=—00, n#ay

Example Since

22

t 1
Res <7TCO 7TZ;n> =— VneZ n#0,
n

1
by setting f(2) = — in (x), we have

z
=1 1 > 1 1 T otz
23 X ﬁ:_f{es( > ;0)-
1 n=—00,n#0

Since cot(—z) = cot z which implies that co, = 0 for all k in the Laurent expansion of cot z at

. . c_1\ 1 . C_q 1
z=0,and c_; = lim zcot z, ¢; = lim (COtZ — —> —, c3 = lim <c0tz - — = clz> —, ..., etc.,
z—0 z—0 z z z—0 z 23
that is
. 1z z3+ . mcotmz 1 w2 7r4,z+
cotz=———-——+--- - _ _ 224
z 3 45 22 23 3z 45 ’
we have .
1 1 Tcot Tz 2
— =——Res | ———;0) = —.
n? 2 z2 6

1

Example Since

1
n) = =(-1)" VneZ,

sinmz’ COS TN

Res <

and since
csc?mz =1+ cot? 1z = cscrmz is bounded on Cly,

Thus we may conclude that

lim 7w f(2) cscmzdz =0,
N—oo Cn

and by the Residue Theorem, that

0.9}

Z (=" f(n) =— ZR@S (mf(z)csemz; ),
k=1

n=—o0, n#a

where {ay}t, are poles of f.
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1
So, by setting f(z) =

—» we have

z
. )t I & (= 1 T CSC T2 w2
S Y S e (FR0) -
1 n=—00,n#0

since
TCSCTZ 1 . w2 n Ttz n
22 23 6z 360

Example For each n > 0, since

2n 1 / (14 2)* 2n\ 1 1 (14 2)*™ dz
= — — dZ —— - = — o~ T,

n 2mi Jo o 2n Tl n )5 2mi Jo (bz2)" oz
1+ 2

52|

4
where C' = {z | |z| = 1}, and since < £ on |z| =1,

14+2)" 1 & 1—|—z 1 1 1 .
Z —— = . > = 5 uniformly on [2] = 1,
(5z)ntl 5z 5z . (1+2) 3z2—1—=z2

n=0 n=

5z

we have

—~/2n\ 1 5 dz 35
— = — ——dz=5R = V5.
Z(n>5” 21 Jipmg 32 — 1 — 22 = ohes (3,2—1—,22’ 2 > Vi

n  2n
2
Example For each k > 1, since (14 2)" (1 —1/2)"" = Z(—l)k (Z) (;) 2%(1/2)*, and by
k

the Cauchy Integral Formula, we have

() - g [ O L e,

where C' = {z | |z| = 1}.

|z + 1]

~

Now
(Claim) [(z+1)(z—1) |<—f for all z € C' = {z | |z| = 1},
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& (MY [ 2n 16 "
_ < (= '
e () ()< (5)
k=1
Proof of Claim Let a = |z — 1|, b = |z + 1] and consider the function f(a,b) = a®b for all
a >0, b> 0 such that g(a,b) = a® + b* = 4. By the Lagrange multiplier method, to

we have

maximize f(a,b) = a®b subject to g(a,b) = a® + b*> = 4,
we solve

(2ab,a®) = Vf = A\Vg = \(2a, 2b)
— b=\, a® =2)\? by substituting into g(a,b) = a® +b* =4

2 16
7 and f(V2X\,\) = —V/3

:}A:
9
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